BENEFITS

KEY

• Exceptional Durability

- Engineered with PE100 material for performance
- high-quality long-lasting
- Resistant to chemical degradation, ensuring an extended lifespan of up to 50 years
- Withstands high water pressure and environmental stresses
- Enhanced Water Quality and Safety
 - The inner layer contains titanium dioxide particles, providing antibacterial properties
 - Minimizes the release of harmful organic substances into the water
 - Complies with international standards for drinking water safety
- Efficient Water Transportation

YOUR TRUSTED PARTNER IN WATER TRANSPORTATION SOLUTION

Contact our sales team today to learn how our innovative triplelayer polyethylene pipes can benefit your water infrastructure projects.

GET IN TOUCH

+9821-88102290-7 +9821-84290

gostaresh.plastics@gmail.com

6th Floor - No. 26 - 9th Alley
Vozara AVE. - Tehran

Manufacturer of all Types of single-layer, three-layer, drip and tape pipes and polyethylene fittings INTRODUCING GOSTARESH'S INNOVATIVE TRIPLE-LAYER POLYETHYLENE PIPES

Discover the Future of Water Transportation with Enhanced Durability, Safety, and Efficiency

Invest in the Future of Water Infrastructure: By choosing Gostaresh's triple-layer polyethylene pipes, you are investing in a sustainable, efficient, and safe solution for water transportation. Our state-of-the-art triple-layer polyethylene pipes are designed to outperform conventional singlelayer pipes, offering superior durability, water quality, and efficiency.

GOSTARESH'S

ADVANTAGE

Advanced Triple-Layer Construction:

- Outer Layer: PE100 with pigment for UV protection and external durability
- Middle Layer: Colorless PE100 for structural integrity and flexibility
- Inner Layer: White PE100 with titanium dioxide for antibacterial properties and water purity

Proven Performance:

- Extensive testing demonstrates superior resistance to chlorinebased disinfectants compared to single-layer pipes
- Minimal release of organic compounds, ensuring safe and clean drinking water
- Maintains excellent mechanical properties and crack resistance under high water pressure and environmental stresses

		1	\$		Mass in Kghm	1.73	2.44	3.51	5.24	6.75	8.47	11.0	14.0	17.2	21.8	27.0	33.8	42.7	543	1		1
	2.5	9	PN 25		e M	11.7	13.9	16.7	20.3	23.0	25.8	29.4	33.0	36.7	41.3	45.8	51.3	573	65.0	1		1
	3.2	7.4	PN 20	PN 25	e a	10.5	12.5	15.0	18.3	20.8	23.3	26.6	29.9	33.2	37.4	41.5	46.5	523	59.0	r	1	1
					Naes in Kgfm	1.47	2.09	3.00	4.49	5.77	7.25	9.44	11.9	14.8	18.6	23.0	28.9	36.5	46.3	58.8	74.4	1
					emax	9.6	11.5	13.7	16.8	19.0	213	24.2	27.2	30.3	34.0	37.8	42.3	47.6	53.5	60.3	67.8	1
		6	PN 16	PN 20 1	e the	8.6	10.3	12.3	15.1	17.1	19.2	21.9	24.6	27.A	30.8	34.2	38.3	43.1	48.5	54.7	61.5	1
					Mass in Kghn	1.26	1.76	2.54	3.78	4.87	6.11	7.96	10.1	12.4	15.8	19.4	24.3	30.8	39.1	49.6	62.7	773
	Ŧ				emax	8.0	9.4	113	13.7	15.6	17.4	19.8	223	24.8	27.9	30.8	34.6	38.9	43.8	49.3	55.5	61.5
				PN 16 H	e	7.1	8.4	10.1	12.3	14.0	15.7	17.9	20.1	22.4	25.2	27.9	31.3	35.2	39.7	44.7	50.3	55.8
		2	5		Mass in Kg/m	1.05	1.47	2.12	3.14	4.08	5.08	6.67	8.42	10.4	13.1	16.2	20.3	25.6	32.5	41.3	52.3	64.5
4	0	Ξ	PN 12.5		e a	6.5	7.6	9.2	11.1	12.7	14.1	16.2	18.2	20.2	22.7	25.1	28.1	31.6	35.6	40.1	45.1	\$0.1
		13.6	PN 10 PI	PN 12.5 P	e m	5.8	6.8	8.2	10.0	11.4	12.7	14.6	16.4	18.2	20.5	22.7	25.4	28.6	32.2	363	40.9	45.4
					Mass in Kghn	0.873	1.24	1.77	2.62	3.37	4.22	5.50	6.98	8.56	10.9	13.4	16.8	21.2	26.9	34.1	43.2	53.3
53	0.0				e	5.3	6.3	7.5	9.1	10.3	11.5	13.1	14.8	16.3	18.4	20.4	22.8	25.7	28.9	32.5	36.6	40.6
			PN 8 1	PN 10 P	emp	4.7	5.6	6.7	8.1	9.2	10.3	11.8	13.3	14.7	16.6	18.4	20.6	23.2	26.1	29.4	33.1	36.8
					Mass in Kofm	0.721	1.02	1.46	2.17	2.76	3.46	4.52	5.71	7.05	8.93	11.0	13.7	17.4	22.1	28.0	35.4	43.8
~	•	17			eme	43	5.1	6.1	7.4	8.3	9.3	10.6	11.9	13.2	14.9	16.4	18.4	20.7	23.4	26.2	29.5	328
			PN 6	PN 8 1	e	3.8	4.5	5.4	6.6	7.4	8.3	9.5	10.7	11.9	13.4	14.8	16.6	18.7	21.1	23.7	26.7	29.7
					Mass in Kgim	0.580	0.828	1.18	1.77	2.27	2.83	3.72	4.67	5.78	7.30	8.93	113	14.2	18.0	22.9	28.9	35.7
9	=	21			em	3.4	4.1	4.9	6.0	6.7	7.5	8.6	9.6	10.7	120	13.2	14.9	16.6	18.7	212	23.8	26.4
			PN 5	PN 6	emp	30	3.6	43	53	6.0	6.7	1.7	8.6	9.6	10.8	11.9	13.4	15.0	16.9	1.9.1	215	23.9
					Mass n Kg/m	0.494	0.675	0.978	1.43	1.84	232	3.04	3.79	4.69	5.89	7.30	9.10	11.6	14.6	18.6	23.5	28.9
12.5	C.11	26			e	2.9	3.3	4.0	4.8	5.4	6.1	7.0	1.7	8.6	9.6	10.7	11.9	13.5	15.1	17.0	1.01	212
16				PN 5	a a	2.5	2.9	3.5	42	4.8	5.4	6.2	6.9	1.7	8.6	9.6	10.7	12.1	13.6	15.3	17.2	19.1
			-		Mass Kgfm	0.399	0.551	0.791	1.17	1.51	1.88	2.42	3.07	3.84	4.77	5.92	7.40	9.37	11.8	15.1	19.0	23.4
	9	33	PN 4		emax	2.3	2.7	3.2	3.9	4,4	4.9	5.5	6.2	7.0	7.7	8.6	9.6	10.8	12.1	13.7	15.3	17.0
		13	PN 3.2	PN 4 I	e m	2.0	23	2.8	3.4	3.9	4.3	4.9	5.5	6.2	6.9	1.7	8.6	9.7	10.9	12.3	13.8	15.3
					Mas s Kghm	0.364	0.467	0.643	0.943	1.23	1.54	2.0	2.49	3.05	3.86	4.83	5.98	7.52	9.55	12.1	15.3	19.0
00	3	41			eme	2.1	23	2.6	3.1	3.6	4.0	45	5.0	5.5	62	7.0	1.7	8.6	9.7	10.9	12.2	13.7
					e at	8'1(1	2.0	22	2.7	3.1	3.5	4.0	4.4	4.9	5.5	6.2	6.9	1.7	8.7	9.8	11.0	12.3
PIPE	SERVES	SDR	PE 80	PE 100	p	63	75	60	110	125	140	160	180	200	225	250	280	315	355	400	450	500